Cantor's theorem 康托尔定理
(重定向自Cantor theorem)
In elementary set theory, Cantor's theorem states that, for any set A, the set of all subsets of A (the power set of A) has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be seen to be true by a much simpler proof than that given below. Counting the empty subset, subsets of A with just one member, etc. for a set with n members there are 2 subsets and the cardinality of the set of subsets n < 2 is clearly larger. But the theorem is true of infinite sets as well. In particular, the power set of a countably infinite set is uncountably infinite. The theorem is named for German mathematician Georg Cantor, who first stated and proved it.