Mean curvature 平均曲率
In mathematics, the mean curvature
of a surface
is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.
The concept was introduced by Sophie Germain in her work on elasticity theory. It is important in the analysis of minimal surfaces, which have mean curvature zero, and in the analysis of physical interfaces between fluids (such as soap films) which by the Young–Laplace equation have constant mean curvature.